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SUMMARY

The questions we shall discuss in what follows belong to
two fields which formerly wer» quite disjoint, the classical
theory of probabllity and the classical calculus of variations.
That there is now consideradble overlap i=s due to trhs rise in
scientific interest in the field of control processes. Al-
though it is only within the last few years that the theory
of feedback control has penetrated the academic curriculum and
become a respectable member of the mathematical community, the
conventional formulation is already far outmoded. 1In order to
treat current and future problems of any significance, it is
absolutely essential to introduce stochastic elements. These,
however, enter in entirely novel ways, not in the rairli well
understood fashion of conventional stochastic processes, but

"

in connection with "learning processes,” or, as we shall

henceforth say, adaptive processes.

In what follows we show how the functional equation tech—
nique of dynamic programing can be used to treat adaptive
control processes, and how oontinuous processes can be defined

in terms of the discrete versions.
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A MATHEMATICAL FORMULATION OF VARIATIONAL PROCESSES
OF ADAPTIVE TYPE

Richard Bellman

1. Introduction

The questions we shall discuss in what follows belong to
two fields which formerly were quite disjoint, the classical
theory of probability and the classical calculus of varilations.
That there i8s now considerable overlap 18 due to the rise in
scientific interest in the field of control processes.
Although it is only within the la.t few years that the theory
of feedback control has penetrated the academic curriculum and
become A respectable member of the mathematical community, the
conventional formulation 18 already far outmoded. In order to
treat current and future problems of any significance it is
absolutely essential to introduce stochastic elements. These,
however, enter in entirely novel ways, not in the fairly well
understood fashion of conventional stochastic processes, but
in connection with "learning processes,' cf. [2].

or, as we shall henceforth say, adaptive processes,

In order to prepare a suitable background for the intro-
duction of the new features, let us review the elcmentary ideas
of feedback control processes. We are, of course, here
interested only in the mathematical presentation of these con-
cepts, and shall ignore any of the difficulties of engineering

or statistical application.

One version of the feedback control problem is that of

maximizing a functional of the form
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(1) Iy) =,/ Flx,y)at
0
over all functions y(t), where x and y are connected by

neans of a differential equation
(2) %% o O(er)) X(O) = C,

and y may e subject o further constraints which, in general,
will depend upon x(t).

Although problems of this genre appear to belong in - very
natural way to the calculus ot variations, and thus to be
susceptible to classical techniques, they are cften more
advantageously treated by means of the theory of dynamic pro-
gramming (1], [2]. It turns out to be convenient from many
points of view, conceptual, analytic, and computational, to
consider a discrete version of the foregoing problem.

Let us agree to maximize the function

N
(3) Ig(y) = kiol’(xk,yk)
where
(4) x, ., =x +0(x,y.), x,=c,

over the set of y: yl,yz,...,yN, with, as above, possibly
some constraints present. Not only are problems posed in this
form much more amenable to the application of digital computers,

but, what is often forgotten, they frequently represent more
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realistic descriptions of the original physical process.

So far, everythi‘ng has been very deterministic. Let us
now introduce stochastic elements. In place of the transforma-
tion of (2), let us suppose that X+l is obtained by means

of a stochastic transformation
(5) x, =% +G(x,y..r), x5=c.

In place of the original maximization problem, let us consider
the problem of maximizing the expected value of the function
(6) (v) = £ B )
6 Ju{y) = 2 F(x ,y.,r. ).

N koG k’"k’"k
At the moment, we take the T to represent a sequence of
independent random variables, and the Y, are to be chosen 1in
feedback fashion. By this we mean that Yy 18 chosen with
«nowledge of xO'xl""’xk—l’ yO'yl""'yk—l' ro,rl,...,rk_l,

but not of nor of any of the following x's, y's, or r's,

r.»

In [3] we discussed in some detail the use of the
functional equation techniques of dynamic programming to treat
optimization problems of this nature. Our emphasis there was
upon the use of discrete processes to lay a foundation for the
rigorous formulation of continuous processes,

In this paper, we wish to discuss corresponding problems
arising in cases in which the distribution functions for the
r, are only partiali)y known. The problems we discuss here
represent only a small part of the cornucop.a of questions

which the theory of feedback control thrusts upon us. In a
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series of papers with R. Kalaba [4,5,6 ,7 , 8], we have laid

a foundation for the study of such questions.

2. Multistage Decision Procecsses

To treat the optimization problems described in the pre-
ceding paragraph, as well as those of more complex nature, we
use the concept of a multistage decision process., Let p be
a point in a space S and T(p,q) a set of transformations,
defined for all p € S and q € Sl' a second space, with the
property that T(p,q) « S forall p ¢ S and q - Sy-

Starting with a point P,» & choice of qy is made,
leadiiig to a new point p, = T(pl,ql). Repeating the process,
a choice of q, leads to a third point Py = T(pz'qg)' and
so on. The set of q's, [ql,qe,...,qN], 1s called a policy,
and the process itself is called a multistage decision process.

LLet us now suppose that the q, are to be chosen 8o as to

maximize a preassigned criterion function
(1) B(D)sBos - & < Py ;a5 s Ay e

A policy which maximizes is called an optimal policy.

Since the problem of determining optimal policies in thls
generality 1s much too difficult, let us restrict ourselves to

the case whers F 18 separable,

(2) Py = R(p ,q;) + R(p,,q,) + +++ + R(py,qy).

Fortunately, in many significant applications, F can be taken

to have this form.
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The case where only the tem R(pN,qN) appears is called

terminal control in engineering circles. If the number of

stages, N, 18 itself a function c¢f the sequence of states
and decisions, we speak of an implicit variational problem.
The bausic problem is that of determining optimal policles

and the value of the maximum of F.

3. Punctional Equation Approacsh

For a variety of reasons which we shall not enter into,
conventional methods of calculus are seldom operative by them-
selves. Let us introduce the sequence of functions ifN(pl)i,
defined by the relation
for N=1,2,..., and Py € S.

An application of the principle of optimality (1], p. 83,
(or, in this case, sume simple manipulation) yields the bastic

recurrence relation

!

14

(2) fy(p,) = max [R(p;,q,) + £ (T(py,q,))
1

for N = 2,3,..., with

Y

These equations yleld two sequences, the sequence of

maxima, irN(pl)}’ and the sequence of poiicy functions,
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{qn(p,)z. The function qu(pl) is the choice of gq, which 1is
made wnen the system is in state P, and there are N stages

remaining.

4, Discussion

The usual approach to the foregoing maximization problem
attempts to determine the set [ql,q2,...,qN at one time,
using variational techniques. In place of this, we determirie
q, in terms of P, and N, then q2 in tems of Py and

N-—1, and go on. This 18 feedback control. wWe determine the

"eontrol vector"” qy in terms of the current state of the
system, Py and the duraticn of the process, N - 1.

For deterinistic processes, the two approacnes are equiva-
lent. Por stochastic processes, they diverge rapidly. wWe shall
pursue the "feedback' approacn since it is both easier to follow

and much the more important,

5. Stochastic Multistage Decision Processes

Let us now suppose that a choice of q, in state P,
ylelds a state p, = T(pl,ql,rl), where r, 1s a random vector
with a given distribution function dG(r)). As above, we assume
that T(pl,ql,rl) €S for p, ¢ 8, q,€¢ S' and r; chosen
from dG(rl).

In place of the maximization problem in q2, we consider the

problem of maximizing the expected value of

(l) FN L8 R(pl'ql'rl) + R(p2'q2’r2) (VI = R(pnlquvr‘")'
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over all feedback policies [ql,qg,...,qu]. By this we mean
that q 18 chosen with a knowledge of Py- ATtar 9, is
determined, r, 1s obtained from dG(rl), giving rise to p,.
fhen s is selected, with knowledge of Poy Ty i8 obtained
from dG(r2), ylelding Py and so on.

Introducing the sequence of functions

(2) ry(p,) = max exp P,

)]

tq{ {r}
N=1,2,..., we see that

1

and, as above,

(4) £(p,) = max [/ (R(p,a;,r) + fy_ 1 (T(p ,ay,r,)))da(r) ]
£l

for N = 2,3,....
We see then that stochastic processes of this type can be
treated in very much the same tashion as the deterministic pro-

cesses discussed earlier.

6. Prediction and Information Theory

Let us note in passing that these techniques can be used
to provide new approaches to prediction and information theory,
and extensiopa of the previous results. For prediction theory,
see Kalman (9], and Bellman [10]; for informatior theory, see
Bellman—Kalaba [7], [11], and Marvenw- [12].
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7. Adaptive Processes

We now wish to consider processes in which not enough 1is
known %o use a formu.ation of the type given above. There are
many ways of treating processes of this type, and it 1s never
clear as to which is the proper way of dolng this. Nor 1s it
clear that this adjective 'proper” has any meaning in this
context.

It must be recognized, however ruefully o1 regretfully,
that no definitive theory of uncertainty can ever exist. The
theories that are used will depend upon the applications that
are made and the pe:rsonal philosophy o: the user,

We are thinking of processes in which

(1) (a) cause and effect may not be known;
(b) the state of the system at any t‘me may not be known;
(c) the range of decisions may not be known;
(d) the utility functions (e.g. R(p,q)) may not be known;
(e) the duration of the process may not be known;
) 1t may not be known whether deterministic or stochastic

infiluences are paramount, or whether the procees 18 a

one-person or multi-person process.

These are not problems which conventional mathenmatical
techn.ques are designad to treat. wWe propose .0 show how they
can be precisely formulated and treated analytically by means of
the foregoing mathematical apparatus, the functional equaticn
approach of dynamic programming. For some other approaches which

appear promising, see Robbins [13], Box [14].
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8. Information Pattern

In treating processes involving uncertainty, our hope is
that the multistage nature of the situation will enable us to
reduce the .evel of uneertainty stage—by-stage. This idea
leads to some interesting ideas concerning asymptotic behavior
which we shall discuss below.

It 1s not to be expected that in all cases a simplification
will ensue as the process continues. There is little difficulty
in displaying processes which complicate to an extraordinary
degree as additional information 1s obtained.

Without worrying about such matters, let us formulate an
important type of adaptive process. VWe follow the brief sketoh
given in [8]. Let the state of the system S be specified,

as usual, by a point p in phase space, and by an information

patterm P. This information pattern represents the
information about the process that we retain in order to deter—
mine some of the properties of the decision process which are
initially unknown. In our case, let us assume that only the
distribution funetion for r 1is unknowm. The simplest infor-
mation pattern that one can think of in this case is the entire
previous history of the process. Generally, one can do much
better than this and substantially compress the vast amount of
data.

The state of the system is now specified by a point in an
extended phase space, [p,P]. A cholce of a decision veetor
qQ results in a transformation of p into Tl(p,r;q,r), and

P 1into Tz(p,P;q,r). Ners r 1s a randoa vector variable,
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specified by an a priori probability distribution da(p,P;q,r),
iteelf a part of the information patterm P.
Let us suppose, for the sake of simplicity, that the new

state Py is nown after the decision q has been made. Let

the a priori single stage return be ﬂ(?l(p,P;q,r),Te(p,P;q,r)).
Then, introducing the function

(1) fN(P:P) = Min Exp ’(erpn),

where, as in the preceding cases, the minimum is taken over

feedback control policies, we have the funoctional equations

(2) fy(p,P) = lén [L/)ru_l('l‘l(p.?;q.r).Tz(p.P;q.r))do(p.P;q.r)].

for N = 2,3,..., with

(5) fl(p;P) L nén [/)ﬂ(‘rl(p.?;q,r),Tz(p,P;q.r))dﬂ(p.P;q.r)].

These relations can be used to establish the existence of
optimal policies and to study further properties of the multi-
stage process. In particular, as we shall discuss below, they
can be used as a basis for the construction of a theory of

eontinuous processes.

9. Soquential Machines, Coin—weighling and Search Processes

The further study of information patterms inevitably leads
to a consideration of sequential machines and search piocesses
in general. As an 1llustration of the way in which the infor-

mation can become complicated in an extraordinary fashion as a
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process ocontinues, consider the well—known puzzle of locating
& defective coin in a batsh of N coins, given an equal arm
balance, and its extensions.

The initial information is that a batch of N coins con-
tains one defective coin. After a weighing, involving the
comparison of two groups of k coins chosen from this original
set of N ocoins, we know that the defective coin is in one of
these two sets of k coins, or in the remaining batch of
untested N — 2k coins. Thus the form of the information
remains coastant with each succeeding test, or stage of the
process, and simplifies to the point where we can eliminate the
original uncertainty.

Consider what happens, however, when we start with the
knowledge that there are two defective coins. Comparing two

sets of Kk coins each, we are led to the following possibilities:

(1) (a) If the scale balances, there is either one defective
coin in each of the k-sets, or none, which meang
that there are two defectives in the remalning
N — 2k coins.
(b) If the scale unbalances, there 1is either one defective
coin or two defective coins in one of the k—sets, and

either one or none left in the remaining N — 2k coins.

It 's easy to see that as the testing process continues,
the information pattern increases in size and in complexity.
If we allow perfectly general testing policies which admit the
mixing of different batches, it appears to be hopeles. to

attempt to keep track of the proceas.
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Problems of this nature are of great practical importance
and extremely diffieult to handle by means of analytic tech-
niques. JYor some preliminary work on the foregoing problem by
means of funotional equation techniques, see Bellman [15],
Bellman and Gluss [16], Caiems [17].
For a discussion of problems of related nature, see

M. Sobel and P. A. Groll [18], R. Dorfman [19], and P. Ungar [20].

10. Continuous Adaptive Processes

A simple and conoceptually important way to found a theory
of continucus processes of any type is by a passage to the
limit in a theory of discrete processes. I1In some situations,
it 13 not diffiocult to construct a theory of the continuous
process directly. In these cases, it 1is essential to establish
the equivalence of the two approaches. MNany theorems of this
type exist in connection with the study of differential and
difference equations, in the field of partial differential and
difference equations, and in the theory of probability.

In some fields, only recently developed, the continuocus
theories do not exist and seem Qquite difficult to formulate.
Por these, a passage from the discrete to the continuous seems
to be the easlest and safest approach.

One advantage of using the passage to the limit approach
lies in the fact that we can in many cases estadblish the
existence of a limiting continuous process under conditions
vhich are far weaker than those necessary to impose in order

to guarantee the existence of a continuous process constructed

directly.
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In order to illustrate these comments which at first may
not seem reasonable, let us consider a problem in the calculus
of variations.
Suppose that we wish to determine the minimum of the
funetional

(1) J(u) -/o>" g(u,u')dt

over all functions u(t) sa‘isfying the initial condition
u(0) « ¢. This problem is far more complex than it may seem
at first glance. In the first place, to assure that an actual
minimum, rather than an infimum, exists, strong conditions must
be imposed upon the function g(u,u'). Secondly, the standard
variational technique, which leads to the Buler equaticn,
possesses many drawbacks; see [ 2] for a detailed d'scussion.

Vie have then a situation in whish it is not easy to
establish the existence of a solution, and not easy to obtain
the solution once the existence has been estavlished.

Consider, however, a discrete version of the foregoing
problem. Suppose that we wish to minimizse

N
(2) Jl - kgoz(uk’vk)a' uo - ¢,

where u, ., = u  + va. Very mild conditions upon the funetion
€ will enabdble us to assert tha existence of an attained mini-
mum. JPurthermore, if we allow u and v to assume only a
finite set of values, all we ask is that the funotion g(u,v)
be defined for the allowable values of u and v.
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The recurrence relation

(3) fylc) = min [g(e,v)D + £ ,(c + vD)]
v

yields a oconantructive way of obtaining the desired minimum
value.

The question naturally arises as to the relation between
the discrete and continuous versions of this multistage
decision process. Ve suspect that as J — O the dincr'tg
process will converge to the coentinuous process—if we imposse
sufficient regularity conditions upon g(u,u').

This 1s indeed the case. 1t 1s quite easy to show that
the sonditions usually imposed upon g(u,u') to guarantee’ the
existence of a solution are strong enough to yield the desired
limiting behavior. See the proof by Fleming in [ .].

The more interesting problem is to determine conditions
upon g(u,u') which will guarantee that the limit of the
discrete process exists as O ——- 0. We can then define a
continuous process, not directly by way of (1), but in this
fashion.

It turns out that this program can be carried out. In
[21] it was shown that using only the recurrence relation of
(3) and imposing upon g(u,u') oconditions which are far
weaker than those required in the classical theory, the
existence of a limit for fn(o) as ) — O can be established.
It follows that we have a concept of a sontinuous variational

process which generalizes that of the classical version.
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Perhaps the most important aspect of this approach is
that it enables us to introduce the idea of a continuous pro-
cees in situations in which no classical theory exists. 1In
[}] we discussed this for stochastic variational processes.
It is clear that we can in a similar fashion build upon the
formulation of discrete adaptive processes we hLave given in
the preceding pages to formulate a theory of continuous varia-
tional processes of adaptive type. Cimilarly, we can construct
& theory of continuous multistage games, of 2rdinary stochastic
or adaptive type. See [1] for the formulation of the discrete
multistage version.
The problems of convergence of the return function and of
the optimal policies are Qquite complex. They require a blend
of oclassiocal analysis and pr-babllity theory which has not

heretofore existed.

11. Reduction of Dimensionality and Sufficient Statisties

The functional equations we der.ved to treat adaptive
control processes involve, in many cases, functions of
functions. Although these functions can be used to establish
the existence of optimal policies, they are not well suited %o
analytic investigation nor to computational work.

In order to obdtain analytic and numerical results, it is
essential that we reduce these functions of functions to
ordinary functions. In many cases, we can perform this
reduction by using the concept of sufficient statistics. This

idea enables us to reduce the information pattern “rom a set

of functions to an ordinary vector.
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As an example of this, consider a process in which a
certain random variable r assumes only the twoc values O
and 1 with unknown probabilities of respectively 1 - p
and p. After the process has continued for M stages, we
have acquired an information psttern [0,0,1,1,1,...,0,1]
consisting of the values assumed by r over the preceding N
trials.

In place of this set of values which increases in size as
the process continues, we can often use merely the number of
1's and the number of 0U's which have been tabulated. In
these cases, the order of ocourrence is of no importance.

In place of a function rN(c;S) where
s = [0,0,1,1,1,...,0,1], we will now have a function
fu(c,u,n), where m» 18 the nuaber of 1's and n is the
number of 0's; see Bellman [22], Bellman and Kalaba (4],
Preimer [23], [24], for applications of this id-a. Clearly,
this technique ean be used in many ways.

One technique which has not been investigated as yet 1s
that of "asymptotic sufficient statistics.” Perhaps the best
example of this is the centrali limit theorem. If the randoa
variables X, are drawn from an unknown diltribution,'and ifr
it 1s desired to determine the distribution of Zy = 12311'
we know that for large N it is sufficient to tabulate merely

x5 x,2
the two sums X., Xe o
Ut

If, as in many cases, we are interested only in steady-
state policies, which is to say asymptotic policies, results
of this type wiil enable us to reduce the dimension of the
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problem greatly. Other techniques for reduction of dimension—
ality will be found in Bellman [25], Beckwith [26], Bellman
and Kalaba [27], Bellman and Dreyfus [28].

12. Linear Equations and Quairatic Criteria—I

In view of the analytic complexity of the general problem,
and with application of the method of successive approximations
in mind, it is worthwhile to consider processes governed by
linear equations and yuadratic criteria.

Let us consider first the scalar case. Write

(1) u =au, + VvV, +r., uy=c,

n+l n n

and suppose that the vy are to be chosen 80 as to minimize
the expected value of the quadratic fom

2 2
(2) Iy = ngb(un + %vn ).

Consider first the stochastic case where the ry are
independent random variables with known distributions, which
for simplicity of notation we shall take to be same.

Writing

(3) fyle) = Win Exp J

’
\J r N

it 1s easy to see that
2

(u) ro(o) -c,

and
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[ 2 2
(5) f .(¢) « Min |6 + v, + Bxp £, ,(ac + VA + I )]
| A 0 v N1 o* To

- Min (;2 + %voe +V/7r“_1(ac + Vgt r)da(r{].

L

It is easy to show inductively that r'(o) is a Qquad-

ratic in ¢, 1i.e.,
(6) rN(c) = uy + Ve + w"oz, R= 0;1,25:0.

where uys Yy and wy are independent of ¢. Using this
representation for the functions rl(c), we readily obtain
representations for Uys vy and 'H in terms of Ug 40 vu_1
and wy, .; 8ee Bellman [29], Kramer [30], dsokwith [26],
Freimer [23], Adorno [31].

These results can now be used for computational purposes
and to study the asymptotic behavior of return functions and

optimgl policies as N — 00.

13. Linear xXquations and Quadratic Criteria—I11

Let us now consider an adaptive version. JSuppose that
irnf is a sequence of random variables with probabiiity p
of assuming the value 1 and 1 -p of J. It is clear that
we can use the idea of sufficient statistics. Let
(1) t. . (c,m,n) ~ MUn Exp J.,

N N
v r

where m l-values and n O-values have been observed for the

ry over the past = + n stages.
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Let dG(p) be an initial a priori distribution for p

and suppose that it is agreed to use the following transfor—

mations:
da
(2) da(p) —o--—g——igl——, if r. =1,
%’ pda(p) <

a0(p) — —1 = p)4G(p) 4 . .o,
41 (1 — p)da(p) 9

The result is that after m + n ¢trials with m 1's and n

C's, we have as the new a prieri distribution

m n
(3) aa_ (p) = —p {1 —p)da(p)
Lt ‘KT p(1 - p)"da(p)

We use as an sitimate for p for the next stags thne value

1 (/071 p™1(1 - p)"aa(p)
Y - d - )
(%) Pa.n (4? P Gn’n(p) 0671 p(1 - p)laa(p)

Henee, the functional equation for rN(c,m,n) is

(5) r'(c,m,n) « Min [92 +'ﬁvo2 + p (ac + v. + 1)

Vo

n,nrN-l o
+ (1 — pn'n)fu_l(ac + vo)].

As above, we can use the structural relation of (12.0) to

simplify tails relation.
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14, Discussion

The problem of determining the asymptotic behuvior of
r'(c,m,n) as N — 00 has many complex features. It is to
be expected that in one sense or another, r'(c,n,n)rv r"(c,po)
a3 N — 00, vwhere Po is the actual value of p. A parti-

cular version of this problem has been attacked by Adormo E}{].

15. Open Problems

In the foregoing sections we have indicated how a theory
of adap*tive contrvl processes can be constructed. Associated
with this approach, there are any number of analytic problems

which we have explicitly or tacitly raised. Some of these are

(1) (a) 1Is the set of transformations in (13.2) the "hest”
way to modify a prioril information?
(b) 1s the estimate of (15.4) the "best" estimate for p?
(¢) Asymptotically, does it make much difference what
transformations we employ from stage to stage, and

what a priori information we assume?

The analytic difficulties 1in this field are great, but
the conceptual difficu.ties are greater. It seems reasonable
to believe that there never will be definitive theories in
this area, nor is it clear that the word "optimal" has an
absolute meaning. V¥e can summarize the situation simply by
saying that all of the philosophical paradoxes of statistics
and game theory are present, with their cousins and their

sicters and their aunts.
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